Metabolic flux and fitness.

نویسندگان

  • D E Dykhuizen
  • A M Dean
  • D L Hartl
چکیده

Studies of Escherichia coli under competition for lactose in chemostat cultures have been used to determine the selective effects of variation in the level of the beta-galactoside permease and the beta-galactosidase enzyme. The results determine the adaptive topography of these gene products relative to growth in limiting lactose and enable predictions concerning the selective effects of genetic variants found in natural populations. In the terms of metabolic control theory, the beta-galactosidase enzyme at wild-type-induced levels has a small control coefficient with respect to fitness (C = 0.018), and hence genetic variants resulting in minor changes in enzyme activity have disproportionately small effects on fitness. However, the apparent control coefficient of the beta-galactoside permease at wild-type-induced levels is large (C = 0.551), and hence even minor changes in activity affect fitness. Therefore, we predict that genetic polymorphisms in the lacZ gene are subject to less effective selection in natural populations than are those in the lacY gene. The beta-galactoside permease is also less efficient than might be expected, and possible forces resulting in selection for an intermediate optimum level of permease activity are considered. The selective forces that maintain the lactose operon in a regulated state in natural populations are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of selective neutrality: further considerations.

HARTL, DYKHUIZEN and DEAN (1985) have recently proposed a hypothesis for the evolution of selective neutrality. Their idea is largely based on the metabolic models of KACSER and BURNS (1973, 1979, 1981), which show that flux through a metabolic pathway will typically be a concave function of the participating enzyme activities. HARTL and co-workers suggest that, where natural selection favors m...

متن کامل

Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster.

Although there are many in vitro studies of enzyme activity of genetic variants at the Adh locus in D. melanogaster, little is known about the corresponding metabolic activity in living flies. We report here such measurements of the metabolic flux in the conversion of ethanol to the two products, CO2 and lipids, for six different active genotypes, containing the predominant naturally recurring ...

متن کامل

Basic concepts and principles of stoichiometric modeling of metabolic networks.

Metabolic networks supply the energy and building blocks for cell growth and maintenance. Cells continuously rewire their metabolic networks in response to changes in environmental conditions to sustain fitness. Studies of the systemic properties of metabolic networks give insight into metabolic plasticity and robustness, and the ability of organisms to cope with different environments. Constra...

متن کامل

Flux Distribution in Bacillus subtilis: Inspection on Plurality of Optimal Solutions

Linear programming problems with alternate solutions are challenging due to the choice of multiple strategiesresulting in the same optimal value of the objective function. However, searching for these solutions is atedious task, especially when using mixed integer linear programming (MILP), as previously applied tometabolic models. Therefore, judgment on plurality of optimal m...

متن کامل

Do deleterious mutations act synergistically? Metabolic control theory provides a partial answer.

Metabolic control theory is used to derive conditions under which two deleterious mutations affecting the dynamics of a metabolic pathway act synergistically. It is found that two mutations tend to act mostly synergistically when they reduce the activity of the same enzyme. If the two mutations affect different enzymes, the conclusion depends on the way that fitness is determined by aspects of ...

متن کامل

Ohno’s “Peril of Hemizygosity” Revisited: Gene Loss, Dosage Compensation, and Mutation

We explore the evolutionary origins of dosage compensation (DC) in sex chromosomes in the context of metabolic control theory. We consider first the cost of gene loss (hemizygosity) per se in reducing flux, and examine two relationships between flux and fitness (linear and Gaussian) to calculate a fitness cost of hemizygosity. Recognizing that new sex chromosomes are derived from autosomes, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 115 1  شماره 

صفحات  -

تاریخ انتشار 1987